TYPICAL SECTION RTE. C
STA. 176+50.00 TO STA. 176+32.21

PROPOSED BRIDGE A9341
STA. 175+51.69 TO STA. 176+75.31
(SEV. BRIDGE PLANS)
MINOR BRIDGE APPROACH SLABS
STA. 175+32.21 TO STA. 176+52.21
STA. 176+74.79 TO STA. 176+84.79
(BRIDGE ITEM)

EXISTING BRIDGE R0428
STA. 175+62 TO STA. 176+64

TYPICAL SECTION RTE. C
STA. 176+94.79 TO STA. 178+00.00
<table>
<thead>
<tr>
<th>Station</th>
<th>Location</th>
<th>Width</th>
<th>Length</th>
<th>Area</th>
<th>Bituminous Pavement Type</th>
<th>Asgr. for 1 Lift</th>
<th>2 Lifts</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>17645.38</td>
<td>00</td>
<td>Rte. C</td>
<td>24</td>
<td>89.52</td>
<td>353</td>
<td>251.0</td>
<td>25.5</td>
<td>22</td>
</tr>
<tr>
<td>17646.29</td>
<td>00</td>
<td>Rte. C</td>
<td>25</td>
<td>89.52</td>
<td>353</td>
<td>251.0</td>
<td>25.5</td>
<td>22</td>
</tr>
<tr>
<td>17647.12</td>
<td>00</td>
<td>Rte. C</td>
<td>65</td>
<td>89.52</td>
<td>353</td>
<td>251.0</td>
<td>25.5</td>
<td>22</td>
</tr>
</tbody>
</table>

Total: 313.0 | 313 | 92

<table>
<thead>
<tr>
<th>Station</th>
<th>Location</th>
<th>Width</th>
<th>Length</th>
<th>Area</th>
<th>Rock Blanket Type</th>
<th>Rock Blanket</th>
<th>Erosion Control</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>17645.40</td>
<td>00</td>
<td>Rte. C</td>
<td>77</td>
<td>47.54</td>
<td>392</td>
<td>392</td>
<td>614</td>
<td>North side fill and side slopes</td>
</tr>
<tr>
<td>17646.29</td>
<td>00</td>
<td>Rte. C</td>
<td>65</td>
<td>47.54</td>
<td>392</td>
<td>392</td>
<td>614</td>
<td>North side fill and side slopes</td>
</tr>
<tr>
<td>17647.12</td>
<td>00</td>
<td>Rte. C</td>
<td>65</td>
<td>47.54</td>
<td>392</td>
<td>392</td>
<td>614</td>
<td>North side fill and side slopes</td>
</tr>
</tbody>
</table>

Total: 708 | 708 | 1426

<table>
<thead>
<tr>
<th>Station</th>
<th>Location</th>
<th>Waterborne Marking Paint</th>
<th>Waterborne Marking Paint</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>17645.38</td>
<td>00</td>
<td>Rte. C</td>
<td>LF</td>
<td>LF</td>
</tr>
<tr>
<td>17646.29</td>
<td>00</td>
<td>Rte. C</td>
<td>LF</td>
<td>LF</td>
</tr>
</tbody>
</table>

Total: 90 | 90 | See special sheet

TOTAL QUANTITIES SHEET 1 OF 2
<table>
<thead>
<tr>
<th>SIGN</th>
<th>SIZE</th>
<th>AREA</th>
<th>QTY</th>
<th>TOTAL QTY</th>
<th>SIZE</th>
<th>AREA</th>
<th>QTY</th>
<th>TOTAL QTY</th>
<th>SIGN</th>
<th>SIZE</th>
<th>AREA</th>
<th>QTY</th>
<th>TOTAL QTY</th>
<th>SIGN</th>
<th>SIZE</th>
<th>AREA</th>
<th>QTY</th>
<th>TOTAL QTY</th>
</tr>
</thead>
<tbody>
<tr>
<td>MO-1</td>
<td>144x94</td>
<td>13.84</td>
<td>1</td>
<td>13.84</td>
<td>MO-2</td>
<td>144x94</td>
<td>13.84</td>
<td>1</td>
<td>13.84</td>
<td>MO-3</td>
<td>144x94</td>
<td>13.84</td>
<td>1</td>
<td>13.84</td>
<td>MO-4</td>
<td>144x94</td>
<td>13.84</td>
<td>1</td>
</tr>
<tr>
<td>MO-5</td>
<td>144x94</td>
<td>13.84</td>
<td>1</td>
<td>13.84</td>
<td>MO-6</td>
<td>144x94</td>
<td>13.84</td>
<td>1</td>
<td>13.84</td>
<td>MO-7</td>
<td>144x94</td>
<td>13.84</td>
<td>1</td>
<td>13.84</td>
<td>MO-8</td>
<td>144x94</td>
<td>13.84</td>
<td>1</td>
</tr>
<tr>
<td>MO-9</td>
<td>144x94</td>
<td>13.84</td>
<td>1</td>
<td>13.84</td>
<td>MO-10</td>
<td>144x94</td>
<td>13.84</td>
<td>1</td>
<td>13.84</td>
<td>MO-11</td>
<td>144x94</td>
<td>13.84</td>
<td>1</td>
<td>13.84</td>
<td>MO-12</td>
<td>144x94</td>
<td>13.84</td>
<td>1</td>
</tr>
<tr>
<td>MO-13</td>
<td>144x94</td>
<td>13.84</td>
<td>1</td>
<td>13.84</td>
<td>MO-14</td>
<td>144x94</td>
<td>13.84</td>
<td>1</td>
<td>13.84</td>
<td>MO-15</td>
<td>144x94</td>
<td>13.84</td>
<td>1</td>
<td>13.84</td>
<td>MO-16</td>
<td>144x94</td>
<td>13.84</td>
<td>1</td>
</tr>
<tr>
<td>MO-17</td>
<td>144x94</td>
<td>13.84</td>
<td>1</td>
<td>13.84</td>
<td>MO-18</td>
<td>144x94</td>
<td>13.84</td>
<td>1</td>
<td>13.84</td>
<td>MO-19</td>
<td>144x94</td>
<td>13.84</td>
<td>1</td>
<td>13.84</td>
<td>MO-20</td>
<td>144x94</td>
<td>13.84</td>
<td>1</td>
</tr>
<tr>
<td>MO-21</td>
<td>144x94</td>
<td>13.84</td>
<td>1</td>
<td>13.84</td>
<td>MO-22</td>
<td>144x94</td>
<td>13.84</td>
<td>1</td>
<td>13.84</td>
<td>MO-23</td>
<td>144x94</td>
<td>13.84</td>
<td>1</td>
<td>13.84</td>
<td>MO-24</td>
<td>144x94</td>
<td>13.84</td>
<td>1</td>
</tr>
<tr>
<td>MO-25</td>
<td>144x94</td>
<td>13.84</td>
<td>1</td>
<td>13.84</td>
<td>MO-26</td>
<td>144x94</td>
<td>13.84</td>
<td>1</td>
<td>13.84</td>
<td>MO-27</td>
<td>144x94</td>
<td>13.84</td>
<td>1</td>
<td>13.84</td>
<td>MO-28</td>
<td>144x94</td>
<td>13.84</td>
<td>1</td>
</tr>
<tr>
<td>MO-29</td>
<td>144x94</td>
<td>13.84</td>
<td>1</td>
<td>13.84</td>
<td>MO-30</td>
<td>144x94</td>
<td>13.84</td>
<td>1</td>
<td>13.84</td>
<td>MO-31</td>
<td>144x94</td>
<td>13.84</td>
<td>1</td>
<td>13.84</td>
<td>MO-32</td>
<td>144x94</td>
<td>13.84</td>
<td>1</td>
</tr>
<tr>
<td>MO-33</td>
<td>144x94</td>
<td>13.84</td>
<td>1</td>
<td>13.84</td>
<td>MO-34</td>
<td>144x94</td>
<td>13.84</td>
<td>1</td>
<td>13.84</td>
<td>MO-35</td>
<td>144x94</td>
<td>13.84</td>
<td>1</td>
<td>13.84</td>
<td>MO-36</td>
<td>144x94</td>
<td>13.84</td>
<td>1</td>
</tr>
<tr>
<td>MO-37</td>
<td>144x94</td>
<td>13.84</td>
<td>1</td>
<td>13.84</td>
<td>MO-38</td>
<td>144x94</td>
<td>13.84</td>
<td>1</td>
<td>13.84</td>
<td>MO-39</td>
<td>144x94</td>
<td>13.84</td>
<td>1</td>
<td>13.84</td>
<td>MO-40</td>
<td>144x94</td>
<td>13.84</td>
<td>1</td>
</tr>
</tbody>
</table>

REGULATORY SIGNS

- **C H A N N E L I N G ARROWS**
 - 3A, 3B (34x94) 13.08 1 13.08
 - 3A, 3B (34x94) 13.08 1 13.08
 - 3A, 3B (34x94) 13.08 1 13.08
 - 3A, 3B (34x94) 13.08 1 13.08

- **S H A D E D A R W I N G S**
 - 3A, 3B (34x94) 13.08 1 13.08
 - 3A, 3B (34x94) 13.08 1 13.08
 - 3A, 3B (34x94) 13.08 1 13.08
 - 3A, 3B (34x94) 13.08 1 13.08

- **T R A N S I T A R O R Y S I G N S**
 - 3A, 3B (34x94) 13.08 1 13.08
 - 3A, 3B (34x94) 13.08 1 13.08
 - 3A, 3B (34x94) 13.08 1 13.08
 - 3A, 3B (34x94) 13.08 1 13.08

- **S T R A T I F I E D L A T E D D O W N A R W I N G S**
 - 3A, 3B (34x94) 13.08 1 13.08
 - 3A, 3B (34x94) 13.08 1 13.08
 - 3A, 3B (34x94) 13.08 1 13.08
 - 3A, 3B (34x94) 13.08 1 13.08

- **D A W D A R W I N G S**
 - 3A, 3B (34x94) 13.08 1 13.08
 - 3A, 3B (34x94) 13.08 1 13.08
 - 3A, 3B (34x94) 13.08 1 13.08
 - 3A, 3B (34x94) 13.08 1 13.08

- **F A L S E A R M S**
 - 3A, 3B (34x94) 13.08 1 13.08
 - 3A, 3B (34x94) 13.08 1 13.08
 - 3A, 3B (34x94) 13.08 1 13.08
 - 3A, 3B (34x94) 13.08 1 13.08

- **T R A N S I T A R O R Y S I G N S**
 - 3A, 3B (34x94) 13.08 1 13.08
 - 3A, 3B (34x94) 13.08 1 13.08
 - 3A, 3B (34x94) 13.08 1 13.08
 - 3A, 3B (34x94) 13.08 1 13.08

- **S T R A T I F I E D L A T E D D O W N A R W I N G S**
 - 3A, 3B (34x94) 13.08 1 13.08
 - 3A, 3B (34x94) 13.08 1 13.08
 - 3A, 3B (34x94) 13.08 1 13.08
 - 3A, 3B (34x94) 13.08 1 13.08

- **D A W D A R W I N G S**
 - 3A, 3B (34x94) 13.08 1 13.08
 - 3A, 3B (34x94) 13.08 1 13.08
 - 3A, 3B (34x94) 13.08 1 13.08
 - 3A, 3B (34x94) 13.08 1 13.08
COORDINATE POINT LISTING

<table>
<thead>
<tr>
<th>SHEET NO</th>
<th>STATION</th>
<th>LOCATION</th>
<th>OFFSET (USFT)</th>
<th>NORTHING US SURVEY FT</th>
<th>EASTING US SURVEY FT</th>
<th>ELEVATION</th>
<th>DESCRIPTION</th>
<th>GPK POINT ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROJECT CONTROL POINTS</td>
<td>1475-06.76</td>
<td>RTE C RT</td>
<td>455.45</td>
<td>1,360,401,075</td>
<td>1,377,751,213</td>
<td>355.86</td>
<td>201</td>
<td>E201 NW NW CORNER OF BRIDGE</td>
</tr>
<tr>
<td>1475-05.38</td>
<td>RTE C LT</td>
<td>-18.58</td>
<td>1,356,164,404</td>
<td>1,374,732,671</td>
<td>355.86</td>
<td>202</td>
<td>E202 NW NE CORNER OF BRIDGE</td>
<td>202</td>
</tr>
<tr>
<td>1475-05.38</td>
<td>RTE C RT</td>
<td>19.34</td>
<td>1,355,978,180</td>
<td>1,374,678,213</td>
<td>355.94</td>
<td>203</td>
<td>E203 SW SW CORNER OF BRIDGE</td>
<td>203</td>
</tr>
<tr>
<td>1475-05.38</td>
<td>RTE C LT</td>
<td>16.48</td>
<td>1,354,824,807</td>
<td>1,374,638,070</td>
<td>351.37</td>
<td>204</td>
<td>E204 SW NE CORNER OF BRIDGE</td>
<td>204</td>
</tr>
<tr>
<td>ALIGNMENTS</td>
<td>1475-05.00</td>
<td>RTE C</td>
<td>25.02</td>
<td>1,349,306.33</td>
<td>1,374,705.72</td>
<td>356.99</td>
<td>BEGINNING OF PROJECT</td>
<td>-</td>
</tr>
<tr>
<td>1475-05.00</td>
<td>RTE C</td>
<td>25.02</td>
<td>1,349,358.67</td>
<td>1,374,732.26</td>
<td>356.99</td>
<td>FULL FACE RENT 1</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>1475-05.00</td>
<td>RTE C</td>
<td>25.02</td>
<td>1,349,358.67</td>
<td>1,374,689.56</td>
<td>357.82</td>
<td>FULL FACE RENT 2</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>1475-05.00</td>
<td>RTE C</td>
<td>25.02</td>
<td>1,349,955.41</td>
<td>1,374,687.03</td>
<td>357.49</td>
<td>END OF PROJECT</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

CONTROL POINTS

No Coordinate System of 1983

No Control Points

PROJECT NORTING X AVERAGE GRID FACTOR

No State Plane Northing

PROJECT EASTING X AVERAGE GRID FACTOR

No State Plane Easting

Example: Control Point #

\[\text{Example: Control Point } \text{#} \]

Linear Unit Conversion

1 Meter = 3.28083333 US Survey Feet (USFT)
NOTES:

INSTALL PRE-CLOSURE SIGNS WITH PLAQUES 48A & 48B A MINIMUM OF 2 WEEKS PRIOR TO CLOSURE.

WHEN BRIDGE CLOSURE OCCURS, REMOVE SPECIAL SIGN PLAQUES AND RELOCATE NOTED SIGNS.

SEE TRAFFIC CONTROL SHEET 2 OF 2 FOR SPECIAL SIGN AND PLAQUE DETAILS.

ALL SIGNS SHALL BE SPACED AT 500 FEET UNLESS OTHERWISE NOTED.

RELOCATE FROM BRIDGE

INSTALL POST-CLOSURE SIGNS AT ATE 24

LOCATE SIGNS 100 FEET FROM INTERSECTION.

USE IN PLACE ALL SIGNS WHICH DO NOT CONFLICT WITH THIS PLAN. COVER OR REMOVE CONFLICTING SIGNS.

PLACE ALL SIGNS AS SHOWN OR AS DIRECTED BY THE ENGINEER.
(37'-46'-37') PRESTRESSED CONCRETE SPREAD BOX BEAM

GENERAL ELEVATION

Notes:

* Beams in Bridge No. 80420 to be removed per Standard Specifications.

Roadway 100' shall be completed to the final roadway section and up to the elevation of the bottom of the concrete beam unless the limits of the roadway are marked for other than 25 feet. Back of the FRP type of end bents before any gifts are driven for any footing falling within the embankment section.

For General Notes, Location Sketch, Material Data, Foundation Data, Estimated Quantities and Estimated Quantities for Slab on Concrete Beams, see Sheet No. 2.
PART PLAN

Note: All V bars and N bar poles to the End Bent shall be placed parallel to the gliders.

Substructure Quantity Table for End Bent No. 1

<table>
<thead>
<tr>
<th>Item</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Structural Steel Plates (12 in.)</td>
<td>Linear foot</td>
</tr>
<tr>
<td>#42 Bars</td>
<td>Metric ton</td>
</tr>
</tbody>
</table>

These quantities are included in the estimated quantities table on Sheet No. 2.

NOTES:

All concrete in the end bent above top of subbase and below top of slab shall be Class B-2.

Strands at end of the beams shall be field bent or be necessary. All No. 42 bars shall be bent a minimum of 18" from top of slab to provide clearance to flex face of end bent.

For location of control rod and #42 bars see shear wall. See Sheets No. 24 and 15.

For elevation 8-2 and elevation 6-9 see Sheet No. 9.

For details of girder slab at End Bent. See Sheet No. 1.

For details of Bridge Approach Slab, see Sheet No. 22.

For details of End Bent No. 1 not shown, see Sheets No. 4, 5 & 6.
DETAILS OF END BENT NO. 1

PLAN OF BEAM SHOWING REINFORCEMENT

Note: All U bars and Y bar parts on the end bent shall be placed parallel to the girders.

Reinforcing steel not shown for clarity.

Section thru key

Details: Reinforcing steel shall be shifted to clear all parts by at least 12 mm. See other drawings.
Vertical Drain at End Bents

General Notes:

All drain pipe shall be sloped 1 to 2 percent.

Drain pipe may be either 6-inch diameter corrugated lightweight coated steel pipe, underground, 6-inch diameter corrugated polyvinyl chloride (PVC) drain pipe or 4-inch diameter corrugated polyethylene (PE) drain pipe. Drain pipe shall be placed at 1/2 foot face of end bents and inside face of wings. The pipe shall be sloped to lowest grade of ground line. Vertical drain core shall be placed at 1/2 foot face of end bents and inside face of wings. The pipe shall be sloped to lowest grade of ground line. Vertical drain core shall be placed at 1/2 foot face of end bents and inside face of wings. The pipe shall be sloped to lowest grade of ground line.
DETAILED DRAWING

NOTES:
- Rebar shall be aligned parallel to the girder.
- Keying anchor bars shall be provided at each joint.

PLAN OF BEAM SHOWING REINFORCEMENT

Note: All girder bars and key bars shall be placed parallel to the girder.

DETAILED DRAWING

Sheet No. 23 of 29

Abstract this drawing to not be scaled. Refer to drawings.

Ensured Oct. 2023
Checked: Nov. 2023

No. 10, 11, 12, 13.
SECTION A-A

DETAILS OF DIAPHRAGMS AT INTERMEDIATE BENTS NO. 2 & 3

Notes:
- Slab reinforcing bars not shown for clarity.
- For location of slab tie bars, see sheets no. 14 & 15.
- See Cross Section No. 8-8 for details.
- Diagrams at intermediate bends shall be used for construction.
- All tie bars in diaphragm are to be placed parallel to roadway.

Drawn: Aug 2021
Checked: Aug 2021

What This Drawing Is Not To Scale: Existing Drawings
Sheet No. 16 of 29
THEORETICAL SLAB HAUNCHING DIAGRAM (ESTIMATED AT 90 DAYS)

If beam camber is different from that shown on the camber diagram, in order to maintain minimum slab thickness, an adjustment of the slab thickness at the increase in slab thickness on a radius in grade uniformly throughout the structural shall be necessary. No payment will be made for additional labor or materials required for variation in haunching with thickness or grade adjustment.

Concrete in the slab haunches is included in the estimated quantities for slab on Concrete Beam.

SLAB FAGING SEQUENCE

Beam No. 1
Beam No. 2
Beam No. 3
Bottom of Slab
Top of Beam

4 Equal Spaces
4 Equal Spaces
4 Equal Spaces

% Bearing
% Bearing
% Bearing

SPAN (1-2) SPAN (2-3) SPAN (3-4)

36° 36° 36° 36°

THEORETICAL CAMBER DIAGRAM

Conversion Factors for Beam Camber (Estimated at 90 days): 0,25 pt. = 0,2125 x 0,5 it.

Beam
Exterior 2° 2° 2° 2°
Interior 2° 2° 2° 2°

SPAN (1-2) SPAN (2-3) SPAN (3-4)

Bearing

Optiona1 Stay-in-Place FORM DETAILS

Stay-in-Place Forms
Corrugated steel forms, supports, closure elements and accessories shall be in accordance with shop fabrication and maufacture specifications OSU or ASBM 6693. Complete shop drawings of the permanent steel deck form shall be required in accordance with Sec 1008.

Corrugated steel forms shall be filled with an expanded polyurethane material. The polyurethane material shall be placed in the form with an expansion according to manufacturer's recommendations.

Form sheets shall not rest directly on the top of beam. Shears shall be securely fastened to form supports with a strapping or shall be encased in a form designed to support the weight of the form. The form supports shall be placed in direct contact with the top of beam. Ender forms in beam shall not be permitted. All steel fabrication and construction shall be in accordance with Sec. 1008. Corrugated steel forms shall be assumed for beam loading.

THEORETICAL BOTTOM of SLAB ELEVATIONS DIAGRAM

Theoretical Bottom of Slab Elevations at Centerline of Beam
(Prior to forming for slab) (Estimated at 90 days)

Beam number:

1 1 1 1 1 1 1 1

TYPICAL SLAB ELEVATIONS DIAGRAM

Poured Bottom of Slab Elevations

The contractor shall furnish an approved retarder to retard the set of the concrete in 2.5 hours, and shall pour and satisfactorily finish the slab pour at the rate given. The concrete diagram at the intermediate bents and integral bents shall be poured a minimum of 30 minutes and a maximum of 2 hours before the slab is poured.

Elevations are based on a constant slab thickness of 0.375" and include allowance for theoretical steel load deflections due to weight of slab and barrier.
ELEVATION OF BARRIER

Left barrier shown, right barrier similar.

Longitudinal dimensions are horizontal.

General Notes:

- Slipformed option only.

Conventional forming or slip forming may be used. Saw cut joints may be used with conventional forming.

Top of barrier shall be built parallel to grade and barrier joints (except at end bents) normal to grade.

All exposed edges of barrier shall have either a 45°-inch radius or a 3/8-inch bevel, unless otherwise noted.

Penetration for all concrete and reinforcement, complete in place, will be considered completely covered by the contract unit price for Type D Barrier per Linear Foot.

Concrete in barrier shall be Class B-1. Measurement of barrier is to the nearest linear foot for each structure, measured from the centerline of slab on grade after saw cut and formed.

Concrete traffic barrier delineators shall be placed on top of the barrier as shown on Plan Sheets 10017, 1017, and in accordance with Sec 013.

Delineators on bridges with two-lane, two-way traffic shall have retroreflective sheeting on both sides. Concrete traffic barrier delineators will be considered as part of the contract unit price for Type D Barrier per Linear Foot.

Joint sealant and backer rod shall be in accordance with Sec 013 for silcones.[[Slope?] or [Slope?] for saw cut and formed.

For slip-formed option, both sides of barrier shall have a vertically broomed finish and the top shall have a transversely broomed finish.
General Notes:
Contractor shall construct the asphalt slab. The concrete slab is not allowed.
The contractor shall pour and constructly finish the bridge slab before placing the bridge approach slab.

Notes For Asphalt Slab Only:
Payment for furnishing all materials, labor and equipment necessary to construct the asphalt bridge approach slab, including curb, and Type S aggregate base within the bay limits shown, complete in place, with all areas completely covered by the contract unit prices for asphalt approach slab (minor) per square yard. Application of tack is required between lifts per Sec 403.

ASPHALT SLAB
BRIDGE APPROACH SLAB (MINOR)
Integrated and bent shown, non-integrated and bent similar.

SECTION A-A
With the approval of the Engineer, the contractor may crown the bottom of the approach slab to match the crown of the roadway surface.

SECTION B-B
See Missouri Standard Plan 609.00 for details of Type S curb.
<table>
<thead>
<tr>
<th>No.</th>
<th>RC-01</th>
<th>LENGTH</th>
<th>LOCATION</th>
<th>DIMENSIONS</th>
<th>SHAPE</th>
<th>NUM.</th>
<th>REPL.</th>
<th>SCHEDULE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bill of Reinforcing Steel

- Each row represents a different length and location of reinforcing steel.
- Dimensions provide the specific measurements for each piece.

Diagram

- Visual representation of the steel placements and shapes.
- Shapes are labeled with numbers corresponding to the bill of materials.

Notes:

- All dimensions are in feet and inches.
- Shapes are referenced with numbers for easy identification.
- This drawing is not to scale and dimensions are approximate.
As-Built Pile Data

<table>
<thead>
<tr>
<th>Pile No.</th>
<th>End Bent No.</th>
<th>Intermediate Bent No. 1</th>
<th>Intermediate Bent No. 2</th>
<th>Intermediate Bent No. 3</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>11</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>12</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>13</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td></td>
</tr>
</tbody>
</table>

Note:
- Fill in remarks column:
 - Fill type and grade
 - B. Bolt
 - C. Drive to prism refusal

This sheet is to be completed by MDoT construction personnel.